Abstract:Inordertoavoidtheproblemofproductqualityinmachiningprocess,theproductqualityisnotstable,andtheproblemoffalsewasteisanalyzed.Thereason,intervalandsolutionsoftheproblemarepresented,whichisbasedonthefactthattheproductqualityisnotstable.Thismethodisappliedtoactualproductiontoimprovetheeconomicbenefitsofenterprises.
关键词:假正品;产生原因、区间;解决措施
Keywords:falsegenuine;thereasonandinterval;thesolution
0引言
除“假废品”外,在机械产品的加工中,还有一种与其相似的“假正品”现象。其产生原因与“假废品”现象相同,都是由于在机械加工中工艺基准与设计基准不重合时利用工艺尺寸链计算工序尺寸和公差时出现的,只不过它正好和“假废品”现象相反,前者是工序尺寸超差而设计尺寸合格,而“假正品”则是工序尺寸合格而设计尺寸超差。对此我们做了一定的研究。
1案例
如图1所示,是某矿山企业输送机上用压板零件局部简图,在用调整法镗削两孔O1、O2时,均以M面为定位基准,需标注镗削两孔的工序尺寸。因该零件加工后,在检验两孔孔距时,其测量不方便,试标注出测量尺寸A的大小及偏差。若A超差,可否直接判断该模板为废品?
2解题过程
3结果分析
通过尺寸链的计算可以看出,测量尺寸A的公差为0.24,而设计尺寸80±0.1的公差为0.2,TA>T80,由此可知,若A超差,就可直接判定该压板因该尺寸不合格而为废品。若反过来,是否A合格,两孔中心距尺寸80±0.1mm就合格呢?现分析一下这个特例:假设压板加工好后测得A的实际尺寸为50.08mm,而两孔尺寸均为?准30.04mm,则两孔中心距为50.08+30.04=80.12(mm)。显然大于设计尺寸而超差,是不符合设计要求的,也就是该压板为废品。但工序尺寸是合格的,这就是前面提到的出现了“假正品”问题。若“假正品”问题不解决,工人将会将本工序产生的废品当做正品转入下一道工序继续进行加工,就会造成不必要的浪费。
4解决措施
为此“假正品”问题的解决办法同“假废品”一样,他要求工艺人员在计算出工序尺寸和公差后,进一步将“假正品”出现的区间计算出并标明,保证工人在“假正品”出现的区间对工件进行复检,复检办法也同假废品一样,就是直接测量或推算出设计尺寸的实际值,将其与理论值相比较,若实际值在理论要求的范围内则为正品,否则即为废品,废品必须及时报废以免造成不必要的浪费。
那么“假正品”出现的区间如何计算?这是工艺人员应具备的基本能力,其“假废品”区间的计算方法是将工序尺寸的公差比设计尺寸的公差减小的那一部分补出来,上下对称的补,补出的两部分即为“假废品”出现的区域,也就是要求复检的区域。同样的道理,“假正品”区间的确定办法是将工序尺寸的公差比设计尺寸的公差大出的部分减掉,上下对称的减,减去的两部分即为“假正品”出现的区域,也就是需要复检的区域。
以前述的例题为例。工序尺寸A的公差为0.24mm,设计尺寸的公差为0.2mm,工序尺寸的公差比设计尺寸的公差大0.04mm,所以将工序尺寸的公差从上向下减0.04mm,从下向上加0.04mm,分成三部分如下:
50区间为正品区,50与50为“假正品”出现的区域,即需复检区域。验证如下:
①当两孔为最大极限尺寸,测量尺寸A为50.06mm时,孔心距为80.1mm,出现最大极值。若A超过50.06mm,则出现废品,但若两孔尺寸小于最大极限尺寸,则有可能出现正品。若Amm大于50.1mm,则即使两孔为最小极限尺寸30mm,两孔中心距尺寸仍超差。
②两孔为最小极限尺寸,测量尺寸A为49.9mm时,孔心距为79.9mm,出现最小极值。若A小于49.9mm,则出现废品,但若两孔尺寸大于最小极限尺寸,则有可能出现正品。若A小于49.86mm,则即使两孔为最大极限尺寸,孔心距尺寸仍超差。由此得出结论:当测量尺寸A超出50mm范围时,能直接判断该模板为废品;当测量尺寸A=50mm时,压板为正品,无需检验;当测量尺寸A在50mm与50mm两个区间范围时,模板可能是正品,也可能是废品,必须复检。复检办法是:测出两孔和A的实际尺寸,推算出孔心距的实际值,与理论值比较判断其是否合格。若为正品则送入下一道工序继续进行加工,若为废品而且无法修复则可直接报废。
5结语
综上所述,不论是“假废品”还是“假正品”,都是在机械加工生产过程中,所表现出来的实际的问题,严重影响着企业对产品质量的管理控制,是企业工艺人员必须认真对待的。在我们与某机械企业的机械加工工艺人员,一起将上述研究应用到机械零件的加工中,说明了尺寸链的计算是编制机械产品加工工艺中的重要环节,正确的计算与应用,就可以减少不必要的机械加工工时,达到缩短产品的生产周期,保证产品质量,进而提高经济效益的目的。
参考文献:
[1]吴拓.机械制造工艺与机床夹具[M].北京:机械工业出版社,2006.
[2]石莹.Y800X5000震动给料机参数设计[J].煤矿机械,2009,
随着我国技术领域生产自动化的不断完善,作为重要组成部分的机械零件精度加工技术在生产企业进行生产的重要技术手段,机械零部件加工技术在实际应用中,能够较好的实现产品的更新换代,对于产品质量的提高都具有重要的促进作用,在一定条件下能够较好的提高企业的市场竞争力。机械零件精度加工最主要的目标中,对高精度以及零件表面的质量要求极为严格,由于零件加工在一定环境下呈现出其复杂化和不断多样化的形态特征,这对于机械零件加工企业来说带来了新的问题和挑战。随着我国计算机技术在机械高精度加工领域的而不断应用,出现了一种计算机仿真模拟技术的设备,在实际才做中以计算机仿真技术模拟机械零件的加工,在一定程度上较好的实现生产成本的降低,促进效率的不断提高。
1零件精度加工过程中的图像拟合
2拟合补差技术在计算机仿真模拟零件精度加工的运用
3计算机实验仿真结果分析
4结语
关键词机械加工;纹理圆;纹理特征;纹理提取;加工工艺
1机械零件表面纹理特征的提取
1.1机械零件表面纹理特征的产生
在对机械零件进行加工的过程中,通常采用车削、刨削、铣削、磨削等加工工艺进行零件表面的加工制造,但是在加工的过程中因为受刀具行程的作用会在零件表面产生出多种形状的纹理,如直条形、圆形和螺旋形等,其中以圆形纹理最为常见,本文即以圆形纹理为例,分析讨论纹理特征的提取和分析。
1.2纹理特征的数字化表达
图1圆形纹理及局部解析
本文以圆形纹理为例,如上图1中的(a),首先分别在模板图和待匹配图中取若干个有重合可能的圆形,根据图像的大小来确定所选取的纹理圆的直径d,每个纹理圆圆心之间的长度大于圆形直径的一半。在各个纹理圆上取n条直径将纹理圆等分成2n个部分。如图1中的(b)图,纹理圆的解析,以此为例,将圆心设定为,两条直径之间的角度为,设定此角度的直径为,在直径上取以一个像素为间隔的多个像素点,则一条直径上总共会有像素点的总数为(2w+1)个,像素点的坐标为,则可计算像素点的灰度值,关系式如下:
(1)
(2)
根据灰度值的结果,来进一步计算灰度值标准差,具体关系式如下:
(3)
根据计算结果取最小的标准差所对应的直径角度为此纹理圆的方向角,再通过择优的方法计算平均值,得出工件表面整体纹理角度,从而得出模板图像的纹理走向。
1.3纹理走向变化规律的分析
我们对两张图像进行对比,第一张图像为水平角度拍摄,第二张图像为模拟工件抖动拍摄,按不同角度进行旋转拍摄。对两张图象的有重合可能性的纹理进行分析和计算,绘制纹理角度变化曲线图。我们选择不同的部分重复进行拍摄和对比的过程,拟出局部图像的旋转纹理变化曲线图,然后对两张相邻局部的图像纹理进行匹配,先计算图像的纹理走向再进行旋转角度的确定。
2零件加工工艺的识别流程
通过对大量纹理的提取和分析,建立了纹理圆的模型,在此基础上,设计出一种自动识别加工工艺的算法。机械零件表面加工工艺的自动识别流程如下:
对试验用纹理圆直径上的各个像素的灰度值标准差加以检测,测试结果都符合正态分布的要求,此机械零件图像表现为点斑状的纹理特征,与纹理圆理论模型是相适应的,自动识别加工工艺方法为磨削加工,与实际采用磨削加工的工艺相吻合,说明此种方法实际有效。
3结论
机械零件表面的纹理特征对判断零件表面的加工工艺具有重要的参考作用,本文通过对纹理特征的提取和分析,解读零件表面纹理的数字表达,通过计算和分析,研究纹理走向的变化规律,从而建立纹理圆模型,设计一种自动识别加工工艺的方法和流程。测试表明,此方法能够正确识别零件表面采用车削、铣削、刨削和磨削四种加工方式中的哪种加工方法,为视觉测量的图像匹配开辟了一条新路。
参考文献
[1]熊四昌,计时鸣,樊炜,等.基于马尔可夫随机场工件表面纹理模型的刀具状态监测[J].中国机械工程,2011,15(8).
【关键词】分层教学;数控加工;个性差异
随着社会的不断发展进步,忽视学生个性发展的统一规格教育的弊端不断显露出来,造成大学教学出现费时低效的局面。随着教育改革的不断发展,差异性教育符合了现代教育理念,针对学生的个体差异,以及教育部因材施教的教学原则,从以学生为本,满足学生需求的基本目的出发进行分层教学,使不同层次的学生都能在自己的“最近发展区”内获得发展。
因此在我国高等院校,尤其是高职院校中,综合分析多种情况,进行分层教学的的研究越来越广泛,并且不断深入。现针对我校的具体情况进行分析和研究,并通过实验,得出实验结果并进行分析。
1学生个体发展的不同要求进行分层教学
我院属高等职业技术院校,存在很多鲜明的特点。招生生源多样化;招生的学生思
想活跃,差异较大;学生能力水平不以及机械零件数控加工这门课程本身的特点等等,都为实施分层教学提供了必要依据和可操作性。
1.1高职院校招生途径和生源多样化。
现我院的招考途径主要有自主招生,单考单招、国家高考统一招生等几种方式,每种招
生方式对学生的能力考核和要求都是不同的;就生源上讲,有普高生和中职生。由于高中阶段教育侧重不同,普高生和中职生在理论掌握和动手能力等方面都有很大的不同。因此,重视这种不同,根据各自不同的特点进行分层教学是非常必要的。
1.2学生自身特性的差异。
学生自身能力差异在实训实践课堂表现会更加明显,往往这种差距比较大,这也为我们
分层教学提供了条件。数控加工实训课程是一门动手能力要求很强的实践课。而由于我们招生生源的不同,中职生和普高生在实践经验和动手能力方面存在着很大的差异,这给我们提供了分层教学的理论基础。
1.3学生职业生涯规划的不同。
高职学生对自己的职业生涯已经有了基本的规划。因此学生对课程内容的难度需求会有不同。进行分层教学可以使学生有目的的进行学习。
2《机械零件数控加工》课程特殊性的需要
近年来随着职业学校招生途径的多样化,不同生源之间文化水平和技能水平差距越来越大,普通的统一的课题教学模式和内容已经不能满足不同水平学生的学习需求。特殊的课程教学模式和要求更加适合分层教学模式
2.1目前我们的数控加工实训课程存在的主要问题。
统一的教学内容不适合个人能力上存在梯度的学生。数控加工实训课堂教学内容一样,但高职学校的学生的能力和需求差距很大。比如原中职的同学,已经掌握基本的设备操作方法,能加工普通的机械零件;但普通高中升上来同学,数控机械设备还是第一次见到,可以说是零基础能力,相对后期的学习压力就会很大。
2.2统一的教学方式,学习效果不好。
现在统一规格的教学内容,在教学和实践过程当中,往往是几个会做的同学包办所有零件的加工。这样就会造成水平高的同学没有更进进步,水平低的同学没有学到知识。同学之间的能力差距会越来越大。
2.3课堂氛围不活跃。
由于同组的人能力相差悬殊,缺乏互相的学习、沟通和协作。
2.4考核评价激励作用不足。
由于学生的能力和未来的就业方向的差异,同样的考核评价体系起不到足够的激励作用。
3分层教学形式的确定和实施
通过分析我校学生的各方面特点,以及根据《机械零件数控加工》课程的具体特性,以大一第二学期的某班级学生为主体,我们制定了分层教学模式,并进行了实验。
3.1以学生为本,满足学生需求
根据学生的不同水平进行层次的划分。在了解学生的生源、能力、学习意愿的基础上把
3.2因材施教,打造饱满课堂
3.3分层考核,有效激励。
对学生课程考核进行分层。消除以前的顺序排名制,进行分层次顺序排名。对每个层次优秀的学生进行同等的激励,对在同一层次里成绩提高的学生进行特别的奖励。这样使得学生能够充满学习的渴望,不断要求进步。使考核真正对学生进步起到激励作用。
3.4实施结果分析
通过一个学期的分层教学。试验班级和其他并行班级相比,学习热情和学习效果都有了明显的提高。在教学过程检查记录中发现,课堂热情和课堂纪律和学生参与度都是比较高的;在课程结束后的数控中级考证中成绩也明显优于其他班级。
因此,分层教学在《机械零件数控加工》课程中的应用是非常必要的。同时此种学方式也适用于其他以操作训练为主的实训课程中。
[1]蒋国平.职业学校实施分层教学模式探析[J]职业技术教育,2004(7)
关键词:机械加工;零件;因素;解决办法
引言
1机械加工精度的含义
在对零件进行加工过程中,对所加工零件的几何参数,包括长度、宽度、厚度、形状、位置等指标与标准零件的符合程度被称为机械加工的精度。当加工零件与标准零件出现不相符情况时,我们将此情况称为零件加工的误差。可见零件加工精度与零件加工误差之间是成反比关系。零件加工精度包括以下几点内容:(1)零件的大小精度,把加工零件的测量标准限定于一定长度、高度、厚度或者宽度等一定范围内。(2)零件的形状精度,例如所加工的零件是正方体或者是圆柱体等。(3)零件的位置精度。例如零件是处于平行状态还是垂直状态。在任何机械加工过程中,零件的精度都不是100%准确的,都会存在一定的误差,如何很好的将零件误差数值限定于最小的范围内是提高加工精度的关键。通过对零件加工误差产生的原因进行研究,掌握零件加工时产生误差的规律性,采取降低误差的解决办法,使得将误差减小到最低。有效提升机械加工的精度。由于零件加工过程中将会受到多钟因素的影响,造成相同的措施在不同情况下对降低误差的效果各有不同,但是不管时什么样的零件加工工艺,只要加工者严格根据加工零件标准进行操作,就可以有效的降低零件加工误差,提高零件加工的精度。
2影响加工精度和产生误差的原因
3如何提高机械加工工艺精度减少误差
3.1降低原始误差数值在机械零件加工过程中,当发现影响加工精度的原始误差问题时,应马上制定出解决办法,将原始误差数值降低到最小,同时避免原始误差的再次出现或者扩大。3.2误差补偿措施如果检测到误差时,应采用人工的方式,制定一套相反的误差解决办法,使得制造的误差与本身误差能够发生相互消减,从而实现提高机械加工精度的效果。3.3误差转移措施在机械加工过程中,如果机械加工精度无法达到标准,可以通过误差转移措施给予解决,将集合性误差转移,也可以将受到压力、热力导致变形的误差转移出去,通过使用转移误差措施,能够用一般精度的机床,将高精度的零件进行加工。
在机械零件生产与加工过程中,由于受到多种因素的作用,会影响到加工精度,从而导致生产质量不达标的问题,根据上述研究,我们知道加工工艺对加工精度影响很大,只有有效地减少加工中产生的误差,才能提高加工精度,才能保证生产零件的质量符合标准。
[参考文献]
[1]王广幼,刘海平,张玉嬿,等.机械加工误差分析的计算机方法[J].沈阳农业大学学报,1994(2):224-228.
[2]张光北,刘海华,李普曼,等.计算机对加工误差的综合分析[J].重庆工商大学学报(自然科学版),1995(3):17-21.