航空发动机产业链核心环节解析:从原材料到整机集成的技术壁垒活塞式发展

航空发动机被誉为“制造业皇冠上的明珠”,号称“世界上最难制造的机械设备”。它是一个国家科技、工业和国防实力的重要标志,是构成国家实力基础 和军事战略的核心技术之一。航空发动机需要在高温、高寒、高速、高压、高转速、高负荷、缺氧、振动等极端恶劣 环境下工作,这就使得航空发动机的研制对结构力学、材料学、气体动力学、工程热力学、转子动力学、流体力学、 电子学、控制理论等除了量子力学理论之外,其它的力学理论几乎全部用上。

航空发动机:“工业皇冠明珠”

1、航空发动机是飞机的“心脏”,航空强国的标配

航空发动机被誉为“现代工业皇冠上的明珠”和“工业之花”,是衡量一个国家综合科技水平、科技工业基础实力和综合国力的重要标志,也是飞机的“心脏”。

航空发动机的研究和发展特点是技术难度大、耗资多、周期长,对飞机性能以及飞机研制的成败和进度有着决定性的影响,是产业发展的核心基础,也是衡量一个国家工业水平和能力的重要标志。例如,航空发动机的工作原理复杂,涉及几乎所有科学和工程专业领域,主要结构部件包括进气道、压气机、燃烧室、涡轮和尾喷管,零配件达 3 万多个。

此外,受限于发动机的尺寸小和工作环境严苛的原因,组装过程精细严格,生产商需要在有限的空间中安装成千上万的零件;并且组装精度要求高,单个组件的组装需要独特的技术,其中叶片滚轮的精度要求高达人发丝的十分之一。目前,全球能够自主研制航空发动机的国家只有美国、英国、法国、俄罗斯和中国等少数国家。

2、由活塞式发展至喷气式,军民应用两开花

航空发动机从活塞式发动机发展到今天的多种喷气式发动机,其中涡扇式喷气发动机应用最广泛。从 1903 年世界上第一架飞机诞生,到二次世界大战结束后,几乎所有的战机都采用活塞式航空发动机,这类发动机通过推动螺旋桨使得飞机获得动力。但是,随着航空发动机向高功率和低重量方向发展,功重比较低的活塞式发动机逐渐退出历史舞台。

喷气式发动机可以产生很大的推力,而自身重量又较轻,能够大幅提高飞机的飞行速度,因此得到了广泛的应用。按压气机种类可分为涡轮喷气式发动机、涡轮风扇式发动机、涡轮螺旋桨式发动机、涡轮轴式发动机和螺旋桨风扇发动机。目前,应用最广的是涡扇发动机, 2020 年全球产量占比高达 46.10%。

不同类型喷气式发动机因其自身特性应用于不同机种,涡喷式逐渐淘汰,涡扇式为当今主流。现代涡喷发动机主要由进气道、压气机、燃烧室、涡轮和尾喷管等部位组成,其特点是高空高速飞行时性能较好,但在低速飞行时,高速高温燃气喷出发动机后直接散溢造成巨大的能量损失,其整体油耗高,效率较低,目前除了尚未退役的部分二代战斗机用涡喷发动机外,大多数已被涡轮风扇发动机所取代。

军用涡扇发动机主要有不加力式和加力式两类,前者主要用于高亚音速运输机,后者主要用于歼击机。涡桨和涡轴发动机是在涡喷发动机发展成熟后,将活塞发动机涡轮化而研制发展的新型动力。涡桨发动机的适用速度一般小于 900km/h,在中低速飞机或对低速性能有严格要求的巡逻、反潜或灭火等类型飞机中得到广泛应用。

涡轴发动机一般装有自由涡轮,主要用在直升机和垂直/短距起落飞机上。民用涡扇发动机主要为大涵道比,油耗低,广泛用于大型商用客机。

核心机系列化研制模式降本增效

1、技术难度大、耗资多、周期长,高壁垒铸就产品高附加值

航空发动机价值回报高,经济辐射带动作用强。航空发动机作是工业部门目前附加值最高的高端制造业,对上下游产业也有着巨大的辐射带动作用。一是“回顾效应”,即对机械、仪表、电子、材料、冶金、化工等上游产业发展的带动作用;二是“前瞻效应”,即对航空运输业、旅游业、城市交通基础设施建设、物流等产业发展的诱导作用;三是“旁侧效应”,即对改善国民经济各部门资源配置、提高效率等的推动作用。航空发动机技术门槛高,运行条件要求苛刻。

航空发动机是典型的技术密集型产品,要求重量轻、体积小、使用安全可靠、经济性好,满足在高温、高压、高转速和高负荷等苛刻条件下长期反复工作指标,因而必须设计精巧、加工精密、使用高性能材料部件,其研制对结构力学、材料学、气体动力学、工程热力学、转子动力学、流体力学、电子学、控制理论等学科都有极高要求。

根据统计,世界先进航空发动机研发投入普遍高达数十亿美元,其中 F135 更是高达 67 亿美元。与国外相比,投入资金不足是此前严重限制我国航空发动机产业发展的重要因素之一。1988 年-2003 年间,美国的 IHPTET 计划总计投入 50 亿美元,约是我国 1980 年-2000 年间两项发动机预研计划总投 入的 6 倍。航空发动机研制周期长,预研和工程研制阶段长达 30 年。

根据《航空发动机研制全寿命管理究及建议》,预研阶段和工程研制阶段需要长达30年,此后才能进入实用发展阶段进行大批量装配,整个研发周期漫长。我国成功自研的第一台大推力涡扇发动机涡扇-10 从20世纪80年代后期开始验证机研制,到 2006 年正式宣告成熟定型,历时 20 余载,目前已经成为我国第三代战机的主要配套型号。

2、基于核心机系列化的研制模式,军民一体化推动

航空发动机产业持续发展发动机以核心机为基础可不断改进衍生出系列化军民发动机,降低研发成本,极大提高研发效率及产品可靠性,拓宽市场应用领域,满足不同客户需求。

核心机具有军民通用性,一旦研制成熟,无论是战机的涡扇发动机、轰炸机或者军用运输机的发动机、舰艇使用的燃气轮机都可以由核心机改进而来,制造商可以根据客户的不同需求基于成熟核心机衍生出不同机型,降本增效,且产品可靠性得到保证,极大地拓宽了市场应用领域。

利用多用途核心机研制系列发动机为航空发达国家普遍采用的方式,如美国 GE 公司在第三代核心机的基础上成功研制出一系列军民用发动机,包括 F101、F110、F404、TF39、CF6 和 CFM56。

我国于 70 年代初引进美国核心机和验证机研究途径,坚持走基础研究—应用研究—预先发展(核心机、验证机)—工程研制的研究和发展道路。一款成熟发动机可销售 30-50 年,产品红利期长,军民一体化进一步推动航空发动机产业持续发展。

据美国《国家关键技术计划》描述:发动机产业因其技术高端,处于寡头垄断的环境中,一款成熟产品能够销售 30~50 年,制造商可以充分享受技术和产业链升级带来的市场回报。在航空发动机领域,军用民用航空发动机普遍存在通用性,基于核心机可衍生出满足民用需求的发动机,不仅可最大程度缩短研发周期,而且推动产品系列化发展,延长产品销售生命周期。

我国目前对航空发动机产品军民融合主要体现在国产发动机的军转民应用上,例如,涡轴-8 发动机可同时应用于军用、民用直升机机型;以太行发动机为基础衍生而来的民用燃气轮机,实现一机多型。在民转军领域,我国目前还处于初期阶段。

3、政策支持:三大国家政策铸就航发产业核心竞争力

三大国家政策,聚焦两个关键点,铸就航发产业核心竞争力。“十三五”以前,我国航空发动机产业发展缓慢,曾是我国工业发展的“软肋”:

1)长久以来,由于我国航发制造水平与航发需求严重脱轨,大量航发产品依赖进口。

2)我国航空发动机的研发与制造主要由中国航空工业集团主导,实行“一型飞机配套研制一型发动机”的研制与生产模式。

3)航空发动机与航空飞机研制深度绑定,航空发动机独立研制灵活性受限,国家政策和资金支持力度不够。为增强航发制造实力和相关企业活力,逐步实现航发产品国产化,自“十三五”以来,我国相继出台了军民融合、两机专项等政策,用竞争机制推动技术进步,打通产业链上下游,缩短流程并降低成本,国家千亿拨资,打破产业发展资金制约,解决研发投入,预先研究资金不足。我国还实施了飞发分离等改革措施,成立航发集团,打破体制制约,极大提高发动机研制灵活性和研发效率。

促进军工产业升级

1、军民融合

把国防和军队现代化建设深深融入经济社会发展体系之中,全面推进经济、科技、教育、人才等各个领域的军民融合,在更广范围、更高层次、更深程度上把国防和军队现代化建设与经济社会发展结合起来,为实现国防和军队现代化提供丰厚的资源和可持续发展的后劲。

航空发动机属于国防工业的重要产品,政策的落实对航发的发展与技术的创新有着巨大的作用。通过军民融合,对我国航空发动机领域实现盘活存量资源、促进创新发展有着巨大的推进作用。可有效提升我国航发研制效率、促进军工产业升级。

2、飞发分离

我国在建立航空工业之始学习苏联模式,以飞机型号研发驱动航空发动机型号配套,航空发动机研制缺乏独立自主性,在航空发动机研发周期比飞机研发周期更长的事实下,航空发动机产业发展受到严重制约。

2016 年 5 月,中国航发集团成立,原中航工业旗下的航发资产被剥离出来,划拨到中国航发名下。同时,航发动力、航发控制和航发科技实际控制人变更为中国航发。航发集团的成立标志着我国航空发动机研制正式独立于飞机制造,给予了航空发动机研制更强的自主性,从根源上扫除了航空发动机发展的部分体制障碍,有利于相关主机厂和科研院所专注主业,加快追赶步伐,实现军用和民用发动机的突破。

3、重大专项

发动机研制周期长、研发投入高,核心机预研需要大量资金,与国外相比,投入资金不足严重限制我国航空发动机产业发展。1988年-2003年间,美国的 IHPTET 计划总计投入50亿美元,约是我国1980年-2000年间两项发动机预研计划总投入的6倍。

2016年《“十三五”国家科技创新规划》中明确航空发动机和燃气轮机重大专项为 6 个重大科技项目之一。两机专项政策实施以后,航空发动机专项报送国务院审议,专款专用,保证航发产业有充足的研发资金。两机专项中的航空发动机专项重点局聚焦于小涵道比超音速涡扇发动机和大涵道比大推力长续航亚音速涡扇发动机,基本涵盖了当下国内所有先进航空器对发动机的需求。

航空工业国内产业链全解析

1、国内产业链由航发集团主导,各环节整体竞争格局稳定

从国际上来看,航发产业链已形成“主承包商+供应商”的发展模式。据 GAO 估计,发动机主承包商只生产其最终产品所有零部件中附加值最高的 30%,剩下 70%的生产工作和零部件/子系统研发工作,由供应商负责。

国内市场:航发集团主导国产发动机产业链,各级供应商竞争格局稳定。我国目前已经具备完整的航空发动机产业链的研发制造能力,航空发动机产业链主要由五个环节组成,分别是上游原材料和零部件、中游分系统、下游整机制造和维修保障。

1)上游原材料和零部件领域:以科研院所及其下属企业为主,新兴民营企业也具备一定竞争力,尤其是在零部件领域,民营企业参与度高。

2)中游分系统:以航发集团旗下控制系统生产商航发控制 和 614 所主导。

3)下游整机制造和维修:军用航发制造以航发动力为主,民用航发制造以航发商发为主。军用维修主要由军工维修厂以及航发动力负责,民用维修方面,合资共建的四川斯奈克玛是我国领先的民用发动机修理厂。

2、原材料:发动机基石,产品差异化大

航空发动机成本中原材料占比最高,其中主要使用的是高温合金和钛合金两种材料。按照航发制造成本拆分,现代航空发动机制造成本(不含控制系统)主要由两部分组成:原材料成本和劳动力成本,占比分别在 40%-60%、25%-35%。航空发动机原材料以高温合金和钛合金为主,二者成本约占原材料的 65%,占发动机的 33%。除高温合金和钛合金材料外,新兴的陶瓷基复合材料正逐步扩大在原材料中的占比份额,成为航空发动机中的新型材料。

3、高温合金:发动机发展关键材料,约占整机价值 14%

高温合金是推动航空发动机发展的关键所在,也是发动机原材料的主要成本。一代材料造就一代发动机,发动机性能通常用推重比来综合评定,提高推重比最直接和最有效的技术措施是提高涡轮前的燃气温度,因此,新型先进航空发动机对高性能高温合金材料的依赖也越来越大。

在现代航空发动机中,高温合金材料用量约占到发动机总质量的 40%-60%,主要用于燃烧室、导向叶片、涡轮叶片和涡轮盘四大热端零部件,以及发动机机匣、环形件、尾喷口等工作温度较高的部位。变形高温合金约占高温合金总用量的 70%。

按照合金材料成形方式不同,高温合金可分为变形高温合金、铸造高温合金(包括等轴晶铸造高温合金、定向凝固柱高温合金和单晶高温合金)和新型高温合金(包括粉末高温合金、Ti-AI 系金属间化合物、氧化物弥散强化高温合金、耐蚀高温合金等)。

其中,变形高温合金应用范围最广,占比高达 70%,铸造高温合金位居其次,占比 20%,新型高温合金仅占 10%。单晶铸造高温合金和粉末高温合金将成为主流发展趋势。单晶铸造高温合金在耐高温、抗蠕变、抗疲劳方面有明显优势。单晶铸造高温合金符合现代飞机对高推重比的追求。

有数据显示,在发动机尺寸不变的条件下,涡轮前进口温度每提高 100 度,推重比可以增加 10%。同时,单晶材料没有晶界,在高温应力下不易发生蠕变和疲劳断裂。粉末高温合金采用粉末冶金工艺,具有成分均匀,抗疲劳,热加工性能好等特点。由于单晶铸造高温合金和粉末高温合金优异的性能,国外第三代以后的发动机几乎无一例外使用了单晶涡轮叶片和粉末冶金涡轮盘。

国内高温合金长期面临供需不均衡问题,“两机专项”等政策推动国内高温合金产业发展及需求放量,我国高温合金行业将迎来历史性发展机遇。高温合金在我国的发展起步较晚,依次经历了仿制、仿创结合到独创三个阶段。

目前,我国高温合金虽然已经进入“独创”阶段,但由于高温合金行业技术复杂度高,我国整体技术水平较国外龙头企业仍有较大差距,尤其是在高端产品方面,供需缺口较大。根据中国特钢企业协会统计,约 43%的市场需求依赖进口。为了避免被“卡脖子”,政府陆续出台了一系列政策支持国内高温合金产业的发展。

随着我国全面启动实施航空发动机和燃气轮机重大专项(“两机专项”),高温合金国产替代进口将成为大势所趋,我国高温合金行业迎来历史性发展机遇。

我们预计,我国未来十年不含后市场的航空发动机用高温合金市场空间约为 2209 亿 元。由于上文原材料价值占比 51%的数据未考虑航发控制系统。因此,在考虑控制系统后,我们测算出原材料占航空发动机价值的比例约为 40%,高温合金占航空发动机价值的比例约为 14%。

基于高温合金的价值占比以及上文对我国航空发动机市场空间的预测,我们预计我国未来十年不含后市场的军用航空发动机高温合金市场空间约为 994 亿元,民用航空发动机高温合金市场空间约为 1215 亿元。综上所述,我们预计我国未来十年不含后市场的航发用高温合金总市场空间约为 2209 亿元。

4、钛合金:发动机重要原材料,约占整机价值 12%

钛合金因其优异性能成为飞机机体结构和发动机的重要原材料,在国外先进军机的用 量稳定在 20%以上,我国航空航天用钛合金起步虽晚但发展潜力大。钛合金具有高强度、耐高温、耐疲劳、耐腐蚀和低密度等优点,能有效降低飞机重量,减少对机体疲劳和腐蚀相关检查的工作量。在航空发动机领域,钛合金是重要的原材料之一,主要应用在压气机盘、机匣、压气机叶片、鼓筒、高压压气机转子等部件。

在欧美先进军机中,钛合金用量稳定在 20%以上,其中美国 F-22 战斗钛合金用量高达 41%,我国当前新型战机歼-20 和 歼-31 钛合金用量也分别达到 20%和 25%。2020 年我国钛加工材在航空航天领域的应用 比例仅为 18.14%,与世界先进水平还有一定差距。未来,新机购置叠加飞机换发需求,将带动我国航空用钛合金需求进一步提升。

5、陶瓷基复合材料

新型发动机关键材料,应用占比逐步提升,国内尚处起步阶段陶瓷基复合材料(CMCs)是指在陶瓷基体中引入增强材料,以陶瓷基体为连续相的复合材料,近几十年来在航空发动机中应用占比逐步提升。

陶瓷基复合材料兼顾了金属的高韧性、可塑性和陶瓷的高熔点、耐腐蚀和耐磨损等特性,是新型航空发动机的关键材料。

它的密度约为耐高温镍合金的 1/4~1/3,钨基合金的 1/10~1/9,可以大大减轻发动机结构质量,降低油耗的同时提高推重比,是未来发动机热端结构的首选材料。经过几十年的发展,陶瓷基复合材料已经在高温涡轮叶片、高温燃烧室、调节/密封片等部件上进行了相关典型件测试,部分已实现工程化应用。CMCs 在国外先进航空航天领域已得到广泛应用,国内 CMCs 的研发和制造尚处于起步阶段。国外 CMC 材料已逐步应用于航空航天、能源电力、电子等领域,并在军用领域广泛使用。

根据 GVC 的报告,目前 CMCs 在航空航天领域的用量约占 36%,其他国防军用约占 25%,美国、欧洲等已在多个发动机型号上成功应用 CMC 取代高温合金。

根据 GE 公司的官方资料,GE9X 在燃烧室和高压涡轮上使用了 CMC 材料后,预计发动机的推力增加 25%,燃油效率将提高 10%。国内 CMC 的研发和制造尚处于摸索与起步时期,仍未能满足航空发动机热端构件工程化应用需求。

随着国家政策扶持和国产化替代稳步推进,轻质高强韧、耐高温、长寿命、抗烧蚀、抗氧化的碳化硅陶瓷基复合材料将得以快速发展。目前国内缺乏量产航空发动机复合材料的企业,主要企业为火炬电子和中航高科。由于发动机用复合材料技术壁垒较高,且海外研发企业对中国实行技术封锁、产品出口限制,国内研发与生产需要克服诸多技术难关。

国内相关领域领先的研究机构包括厦门大学特种陶瓷实验室和国防科技大学,可实现生产的企业主要为火炬电子和中航高科,其中火炬电子陶瓷材料业务已实现营收,2020 年陶瓷材料营收达 49.12 万元,毛利率为 70.53%,中航高科还未实现量产,仅实现部分技术突破,行业有待成长。

国外主要企业包括罗罗公司,Coi Ceramics INC.,西格里集团,联合技术等,相较于国内企业存在明显技术优势。

6、零部件:产品种类繁多,锻铸件为核心

航空发动机零部件加工处于航空发动机制造产业链中上游,其具有环节多、工艺复杂、专业性强、精度要求高、与主机厂高度联动等特征。

在军机和民机需求相继释放的背景下,零部件产品的标准化、规模化要求提升,专业分工更为明晰,很多细分领域逐步具备产业化基础。常见的航空发动机零部件有风扇、压气机、燃烧室、涡轮等。

按照毛胚成形方式可分为锻造件、铸造件和钣金件等。此外,随着航空发动机机械设计日渐复杂,更为精密的机加工和 3D 打印技术在航空发动机零部件加工环节得到广泛应用。

7、锻造件

锻造是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,根据成形机理,可分为自由锻、模锻、辗环。

自由锻是指用简单的通用性工具对原材料进行锻压处理和加工的方法,该方法简单、通用性好,成本低,市场占比为 18.5%。模锻是在锻模膛内受压变形而获得锻件,该方法易实现机械化生产,生产率高,市场占比为 75.2%。

辗环是指通过专门设备辗环生产不同直径的环形零件,该方法材料利用率高,精准度高,质量好,市场占比为 6.3%。锻件是发动机转子的主要组成部分,按照产品类型可分为锻造叶片、环形锻件和盘轴类锻件等三大类。其中,锻造叶片主要为风扇/压气机叶片,环形锻件主要为各部位机匣,盘轴类锻件主要为涡轮/压气机盘。

1)叶片是航空发动机最核心的部件之一,主要有锻造叶片和铸造叶片两类,它的制造占据整个发动机制造的 30%以上的工作量。根据前瞻产业研究院的统计数据,锻造叶片价值占发动机叶片总价值的比例约为 37%,占发动机整机价值的比例约为 7%。

2)环形锻件以机匣为主,还包括封严环、外涵道支承等。其中,机匣被称作航空发动机的“骨骼”。它为发动机核心部件如风扇、转轴、叶片、燃烧室及涡轮提供了安全的密闭空间,对核心零部件的失效提供了损伤包容。

3)盘轴类锻件是航空发动机用锻件中数量最多、最常见的一类。由于长期在高温高压和交变载荷下工作,其性能的稳定性对航空发动机的性能有着至关重要的影响。除了涡轮/压气机盘外,常见的盘轴类锻件还包括整流罩、涡轮轴、锥轴等。

随着现代飞机对减重需求的提高,航空发动机锻造技术逐渐向整体化、精密化、薄壁 化方向发展,现已形成整体成形技术、等温锻造技术、精密辗轧技术三种主要成形技术。

1)整体成形技术在减少零件和连接件数量、减轻结构重量的同时,提高零件使用可靠性、缩短制造流程、降低制造成本。其主要应用于飞机机身大型整体隔框锻件的制造。整体锻造 技术的发展需要大型设备的支撑,我国大型模锻压力机设备数量少,因此技术水平也尚待发展。

2)等温锻造技术是一种近净成形工艺,是大型、整体、高性能钛合金复杂关键精锻件成形的一条重要途径。其在压气机盘、整体叶盘、压气机叶片的制造中,可显著改善锻件的组织性能,减轻材料用量,提高材料利用率。

3)精密辗轧技术是航空发动机环形锻件的首选工艺。目前,欧美发达国家普遍采用该技术生产环形锻件,并实现了环形件的无余量近净成形,而且大幅度减少了加工量,提高了环形锻件的性能,降低了生产成本。该技术在我国尚处于发展期,产品质量尚不稳定。

航空发动机锻件价值占发动机总价值的比例约为 20%,由此我们预计,我国未来十年不含后市场的航空发动机锻件市场空间约为 3156 亿元。锻件是飞机中重要的部件之一,在航空发动机的用量及价值占比不断提高。

基于上文对我国未来十年航发市场空间的预测,我们预计,我国未来十年军用航发锻件市场空间约为 1420 亿元,民用航发锻件市场空间约为 1736 亿元。综上所述,我国未来十年航发用锻件总市场空间约为 3156 亿元。

THE END
0.哪类国货销路好?哪些地区销量高?贸促会为中小微外贸企业划重点中小微企业想做出口生意,哪类产品销路好?哪些地区销量高?11月9日,由中国贸促会商业行业委员会和XTransfer联合发布的《2022年前三季度中小微企业出口贸易(B2B)指数报告》(以下简称《指数报告》)显示,今年前三季度,我国中小微外贸企业收款量同比增长12.8%,其中,北美、欧盟、东盟为我国中小微外贸企业收款量前三大目的地jvzquC41hktbplj0gcyuoxsg{0ipo8f414634:62;4;6896478=/j}rn
1.境成研究OLED行业深度解析:关键设备核心材料与国产化机遇面板加工过程主要分为背板阵列(Array)制作、前板成盒(Cell)制作及模组(Module)制作三大制程。 背板段(Array)工艺通过成膜、曝光、蚀刻叠加不同图形材质的膜层以成TFT(ThinFilmTransistor)开关电路,及正极电路,为发光器件提供点亮信号以及稳定的电源输入。 jvzq<84hkpgoen3ukpg/exr0ep5kl|14285/:6/335eql2kpe|t{ƒk944=34B3ujvsm
2.手机维修基础常见故障分析㈡接收机使用传输线变压器吗使一个信号的某种特性参数随另一个信号而变化的过程或处理方法称为调制。按载波参数随调制情号变化的不同,调制可分为两大类:连续调制和脉冲调制。 连续调制又分为三种: 调幅(AM):载波的振幅随信号波的振幅变化而变化; 调频(FM):载波的频率随信号波的振幅变化而变化; jvzquC41dnuh0lxfp0tfv8r{s;?:1jwejk|f1;52:1721:=155854970cuvy
3.金属铸造奠定制造业的基石!详解铸件的工作原理、优势和三大工艺金属铸造主要分为三大类:砂模铸造法、永久模铸造法和脱蜡铸造法。 首先,我们来谈谈砂模铸造法,它是一种以砂为模具材料的金属铸造工艺,也被称为翻砂。砂模铸造法通常会先制作预铸造零件的模型,然后使用砂覆盖模型制成模具。接着,在砂箱中注入熔状金属,凝固后清除沙子即可得到铸件。砂模铸造法的优点在于模具成本低jvzquC41yy}/zrfplkiikwf0eqs0uyjekcr0fnyckne66:=;90nuou
4.乐高:小积木塑造大生态,专注+创新成就玩具帝国在乐高生态系统下,积木零件为最小生产单位,整体生产流程高度标准化,因此乐高成本优势明显,毛利率多年维持在70%左右,且零件的可复用使得库存压力相对较小;而通过对积木零件的灵活组装,又实现了产品的差异化及多样化。我们认为,乐高品牌的成功核心在于其开拓了良性、可持续的商业模式,即兼具标准化及个性化,以低成本实现jvzquC41ycrmu}wggvio0lto1cxuklqgu197:;9:;
5.积极拓展机器人新业务。公司汽车零部件业务分为三大板块:底盘零(1)公司汽车零部件业务分为三大板块: ①底盘零部件业务:包含传统转向器类零部件、减振器类零部件、差速器类零部件、高精密类零部件(营业收入单独分开)。 ② 铝合金轻量化业务:持续加快新能源汽车市场布局,产品包括:集成阀岛、电池包连接块、控制臂等。 jvzquC41zwkrk~3eqo5:2:<4:4?9787;74;:798
6.有关销售类实习报告集合(精选33篇)叉车通常可以分为三大类:内燃叉车、电动叉车和仓储叉车。 (1)内燃叉车 内燃叉车又分为普通内燃叉车、重型叉车、集装箱叉车和侧面叉车。 ① 普通内燃叉车 一般采用柴油、汽油、液化石油气或天然气发动机作为动力,载荷能力 1.2~8.0吨,作业通道宽度一般为3.5~5.0米,考虑到尾气排放和噪音问题,通常用在室外、车间或jvzquC41yy}/fr~khctxgw3eqo5gcw|gp1yikndcqmbq86::;983;3jvor
7.华为入局智能驾驶,激光雷达和云平台“全面开花”车企和华为的合作可分为三大类: Level 1:即为软件实力较弱的车企,由华为作为Tier 1 提供整套解决方案产品(芯片+操作系统+算法软件+传感器的一整套方案),车企实现集成; Level 2:即为具备部分软件算法(如融合决策算法)的车企,由华为提供基础芯片+ 基础软件(操作系统)平台+传感器及感知算法,车企负责融合决策算法jvzq<84pgyy/gn|qtnj/exr0ep5nr8NEXKY0cB>:5:4kuy}
8.什么是齿轮?各种齿轮的原理图解制造/封装3. 齿轮一般分为三大类 齿轮的种类繁多,其分类方法最通常的是根据齿轮轴性。一般分为平行轴、相交轴及交错轴三种类型。 1)平行轴齿轮:包括正齿轮、斜齿轮、内齿轮、齿条及斜齿条等。 2)相交轴齿轮:有直齿锥齿轮、弧齿锥齿轮、零度齿锥齿轮等。 3)交错轴齿轮:有交错轴斜齿齿轮、蜗杆蜗轮、准双曲面齿轮等。jvzquC41yy}/gujehctt0lto1cxuklqg1:?04975146359=244813>;60jznn