干货汽车材料疲劳分析

开通VIP,畅享免费电子书等14项超值服

首页

好书

留言交流

下载APP

联系客服

2019.05.04

本文首先简要介绍疲劳破坏,然后对汽车材料疲劳破坏进行分析讨论,给出几种有效估算疲劳寿命的分析方法。

疲劳破坏涉及面之广几乎涵括汽车、铁路、航空航天、能源、军事国防、海洋油气工程及一般机器制造等各个工业领域,这说明了其问题严重性。对疲劳研究尤其是金属材料是和国民经济发展有密切联系的学科。汽车作为人类出行密不可分的工具,对其疲劳分析研究尤为重要。

1.疲劳的基本理论

1.1.疲劳定义和特点

1.2.疲劳破坏过程和类别

疲劳破坏的过程为:在循环交变载荷作用下,在零部件局部最高应力处的晶粒上形成微裂纹,然后发展成宏观裂纹,裂纹继续扩展,最终导致疲劳断裂经历了疲劳成核-微观裂纹生长-最后断裂三个阶段。

金属材料的疲劳现象,按条件不同可分为:高周疲劳、低周疲劳、热疲劳、腐蚀疲劳和接触疲劳等。

2.汽车材料疲劳

2.1.汽车材料疲劳破坏

汽车长期运行中所承受的外部载荷是循环动态交变载荷,在这种载荷作用下,汽车的许多零构件上都产生动态应力,引起疲劳损伤,其疲劳破坏形式多为疲劳断裂。

2.2.汽车材料疲劳破坏原因

3.汽车疲劳寿命分析

出于经济性和可靠性的考虑,人们对汽车疲劳的研究主要集中在汽车件产品开发设计阶段,主要是对疲劳寿命的预测,已经取得了很好的实际效果。

目前在汽车工业中,在疲劳寿命的预测,主要集中在对关键零构件,如车轮、轮毂、轮轴、转向节和悬挂臂等预测上,因为此类零构件的疲劳断裂最容易产生危险事故。

3.1.疲劳分析方法

在工程中应用的疲劳寿命估算基本方法有三类:

3.1.1.名义应力法

名义应力法(S-N曲线法)也称应力寿命法,表达了名义应力或弹性应力和总寿命之间的关系。其主要基于从试样中测出S-N曲线,并考虑实际零构件与试样在载荷作用下疲劳危险部位的应力集中系数、名义应力、表面处理及等性质参数的差别,加以修正S-N曲线,运用线性疲劳累积损伤理论进行寿命估算。该方法可有效用于低应力高周疲劳寿命的预测,例如对某些复杂零部件和焊接构件的预测,能够获得合理的预测结果。

3.1.2.局部应变法

局部应变法(ε-N法),也称裂纹起始寿命法,它将局部应力-应变法估算出的疲劳裂纹萌生寿命和用断裂力学估算的裂纹扩展寿命相加即为总寿命一种方法。实际应用中,要同时考虑塑性应变和注意载荷施加顺序的影响,还应考虑试样的平均应力、表面处理工艺以及表面光洁度等的影响,这样才能获得更加符合实际的预测结果。工程实践证明,比较适用于高应力低周疲劳寿命。

3.1.3.裂纹扩展寿命法

由于在汽车设计制造或使用环境的原因,可能造成零构件已经有裂纹或缺陷存在,对这些裂纹或缺陷的剩余疲劳寿命估算同样是保障汽车结构安全及延长使用寿命的一个重要环节。当前工程中预估疲劳裂纹扩展寿命理论的基础源自于Paris在1959首先提出的一种用断裂力学参数处理裂纹扩展的方法—LEFM。随着研究的深入,获得了大量工程材料的裂纹扩展速率曲线以及对各种含裂纹构件的应力强度因子解的建立,进一步促进这些理论在工程实际中的广泛应用。

目前用在汽车工业上的疲劳寿命的预测方法,基本上是前两种方法,即为应力法和局部应变法。

3.2.基于有限元分析的疲劳寿命预测

近年来,汽车市场的激烈竞争,进一步促进了疲劳寿命预估在汽车产品设计开发中应用。随着计算机虚拟仿真技术的快速发展,基于有限元软件分析对汽车零部件疲劳寿命估算已在国内外大汽车公司得到广泛应用。与传统的静强度和常规疲劳设计方法相比,它不但避免了只能”检验”、无法“预测”被动局面,而且能给零构件疲劳寿命分布图,计算出在给定载荷作用下不同设计方案预测的疲劳寿命,进而对比优化,选出最优方案。这样,汽车企业就减少试样的数量,缩短开发周期,节省开发成本,提高产品市场竞争力,而且疲劳寿命预测更能反应车辆复杂的实际使用环境,得到顾客的认可。

有限元疲劳分析方法一般包括静态(或准静态)疲劳分析法、瞬态疲劳分析法和振动疲劳分析法等,应根据实际情况合理选择。有限元软件有多种,其中MSC.Fatigue是一个通用性很强疲劳寿命分析工具,可灵活地用来估算复杂零构件的疲劳寿命,已在汽车和航空工业中已经得到广泛的应用。

4.结论

为了提高汽车产品的设计水平、缩短生产周期以及提高市场竞争力,必须对汽车材料进行抗疲劳寿命设计,工程实际应用,应根据载荷及结构特点,选择合理的疲劳分析方法,通过功能强大的有限元软件,进行疲劳寿命预测,进而优化产品设计,提高汽车企业自主开发能力。

THE END
1.抗疲劳制造原理与技术概论1964年国际标准化组织(ISO)在《金属疲劳试验的一般原理》中给疲劳下了一个描述性定义:金属材料在应力或应变的反复作用下所发生的性能变化叫疲劳。所谓的抗疲劳制造技术是指在不改变零件材料和截面尺寸的前提下,通过在制造工艺过程中改变材料的组织及应力分布状态来提高零部件疲劳寿命的制造技术。这种技术的一个突出的特https://www.360wenmi.com/f/file2f2kplzz.html
2.工程力学(第2版)13.7.2 零件尺寸的影响--尺寸因数290 13.7.3 表面加工质量的影响--表面质量因数291 13.8 基于无限寿命设计方法的疲劳强度291 13.8.1 构件寿命的概念291 13.8.2 无限寿命设计方法--安全因数法292 13.8.3 等幅对称应力循环下的工作安全因数292 13.8.4 等幅交变应力作用下的疲劳寿命估算293 13.9 结论与讨论294 13https://baike.sogou.com/v128821692.htm
3.东北大学机械设计考研回忆试题专业课考研资料4.(97‘)机械零件的胶合失效是如何产生的? 5.(97‘)机械零件上那些位置容易产生应力集中? 6.(98‘)用文字描述迈内尔理论。 7.(99‘)在进行机械零件有限寿命的疲劳强度计算时,需要将材料的疲劳曲线修正为零件 的疲劳曲线,有几种修正方法?各有何有缺点? http://www.freekaoyan.com/jy/zhuanyekeziliao/2019/12-19/1576724852455480.shtml
4.机械强度杂志中国机械工程学会主办2019年第01期研究国内外多轴低周疲劳寿命评估方法,归纳了基于临界面法及应变路径的多轴疲劳寿命评估模型,比较了其优劣及适用性。目前多轴疲劳寿命的预测主要是针对一种或少量几种材料而提出的经验或半经验的公式,当这些公式用于其他材料时,常常不能得到令人满意的结果。多轴疲劳问题十分复杂,目前的研究主要是在等温、常幅载荷条件https://www.youfabiao.com/jxqd/201901/
5.热作模具热疲劳寿命评估及预测方法的研究进展自1944年BOAS等[7]第一次提出热疲劳的概念以来,人们一直致力于热疲劳损伤行为和失效机理的研究,并通过调整材料的化学成分、改进制造工艺和零件结构等方法,来改善材料微观组织和受力状态、提高力学性能、减缓和阻止疲劳裂纹的萌生与扩展,以延长零件的使用寿命[8-9]。热作模具的使用环境决定了模具材料的选用,以及服役http://www.cmemo.org.cn/fileup/HTML/20191116.shtml
6.控制残余奥氏体量的方法有哪些?零件淬火后总会或多或少的留有一些未转化的残留奥氏体。过多的残留奥氏体对零件的使用寿命和硬度不利,会造成软点和尺寸的不稳定性,但适量的残留奥氏体可以提高零件的疲劳强度。我们可以通过控制残留奥氏体来控制产品质量和使用寿命,以达到预期效果。 http://www.leemanchina.cn/Article-3120138.html
7.重磅丨中联重科提出塔机30年寿命纳入国家标准公司动态新闻中心塔机结构的刚性匹配、局部的应力集中程度、连接型式等直接影响设计疲劳寿命。企业应有设计标准,结构设计贯彻抗疲劳标准,保障塔机结构满足设计寿命要求。 2.2先进科学的结构寿命计算方法 采用更先进的应力幅法开展塔机焊接结构疲劳寿命评价,建立产品材料疲劳性能基础数据库。 https://www.zoomlion.com/content/details18_22705.html